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Abstract⎯The influence of the position of the pylon on the characteristics of propeller noise has been studied
as applied to environmental noise calculations for future aircraft. Components related to propeller noise itself
and to a signal ref lected from a pylon have been separated in the overall noise produced by the propeller–
pylon system at the blade passing frequency, and the interference of these signals has been investigated. A
numerical method has been developed based on matching of the following two computational blocks: a rotat-
ing domain in the immediate vicinity of the propeller and the outer static domain comprising the pylon. A
noise calculation procedure by the integral Ffowcs Williams and Hawkings method has been implemented
with the use of the Green’s function for the convective wave equation.
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INTRODUCTION
Propeller noise is an important parameter in the

development of turboprop engines for advanced air-
craft. Development of low-noise propellers requires
highly reliable computational methods for calculating
the aeroacoustic characteristics of propellers with the
requirement that these methods should not only apply
to a stand-alone propeller configuration but also be
able to simulate so-called arrangement effects related
to possible interaction with nearby airframe elements. In
particular, it is of special interest to allow for interaction
with a pylon in the two typical configurations of puller
and pusher propellers, in which the pylon is downstream
and upstream of the propeller, respectively.

The influence of the mutual arrangement of pro-
peller and pylon on the environmental noise produced
by the propeller is not as clear as it may seem. On the
one hand, it appears that the puller arrangement
should be quieter than the pusher one, since a pylon
upstream of the propeller creates a turbulent wake
incident on the propeller blades, thus causing inten-
sive noise generation, whereas in the case of a pylon
downstream of the propeller, the latter operates in a
weakly turbulent mode, in this case decreasing the
propeller noise. On the other hand, in many advanced
aircraft, propellers are expected to be positioned near
the tail part of the fuselage, so that the latter and the
empennage screen the propeller noise. In this case, the

pusher arrangement is used, which has the advantage
of allowing flow control devices to be mounted on a
pylon (e.g., for f low blowing) that may weaken the tur-
bulent pylon-induced wake and thereby the related
amplification of propeller noise. The choice between
puller and pusher assemblies thus remains an open
problem.

To numerically investigate the effect of a pylon on
propeller noise, this study has developed a parallel
code for modeling the aerodynamics and acoustics of
propellers that allows transient computations, includ-
ing such complex configurations as propeller–pylon.
The method combines the rotating domain near the
propeller with the outer static domain that envelops
the propeller mounting elements, with the solution
interpolated on sliding planes between different mesh
domains. An MPI+OpenMP two-level parallel model
has been implemented in the software package for
supercomputer calculations.

The software was used to study the effect of propel-
ler location (puller or pusher scheme) on propeller-
induced tonal sound in the far field. The following two
configurations were considered to this end, based on a
model six-bladed aircraft propeller: the puller config-
uration with a pylon in front of the propeller, and the
pusher one with the pylon behind the propeller. For
each configuration, two-zone spatial computational
meshes were created within the rotating domain
760



NUMERICAL MODELING OF THE INFLUENCE OF THE RELATIVE POSITIONS 761
around the propeller and within the static mesh in the
remaining part of the domain, as well as several con-
trol surfaces for noise calculations.

A noise calculation procedure by the integral
Ffowcs Williams–Hawkings method has been imple-
mented with the use of the Green’s function for the
convective wave equation; the co-flow is properly
taken into account. The noise calculation procedure
was verified on a model problem of noise emitted by a
dipole harmonic source, with the use of control sur-
faces characteristic of propeller noise calculations.

Time-accurate transient calculation for the model
propeller was used to study the influence of the pylon
location (puller and pusher assemblies) on the charac-
teristics of the fundamental harmonic of the propeller
noise. Components related to the propeller noise and
to the signal scattered by the pylon have been sepa-
rated in the overall noise produced by the propeller–
pylon system, and the interference of these signals has
been investigated.

Section 1 describes the developed numerical
method for multizone domains; Section 2, the parallel
software and computing; Section 3, the studied com-
putational modes and meshes; and Section 4 analyzes
the noise results for propeller–pylon configurations in
the puller and pusher assemblies. The main results of
the work are summarized in the Conclusions.

1. NUMERICAL METHOD
FOR MULTIZONE DOMAINS

This section describes the numerical procedure for
solving the nonstationary (transient) problem of f low
about a complexly shaped helical configuration. The
starting point is the earlier created parallel code [1] for
modeling the aerodynamics and acoustics of propel-
lers, which solved the problem in its steady-state for-
mulation in a rotating coordinate system. However,
such a formulation of the solution procedure does not
allow transient calculations or calculations of complex
configurations such as the propeller–pylon one. This
work resulted in significant refinements to both the
numerical procedure and the software package. In the
numerical method, a transition was made to modeling
that combined a rotating domain (here and below
referred to as the “washer”) in the immediate vicinity
of the propeller and an outer static domain enveloping
the pylon. To this end, an implicit numerical method
was developed to solve nonstationary problems,
including the time-accurate algorithm of interpolation
on sliding planes between different mesh domains.
The second order of the method is spatially ensured by
the common procedure of reconstructing the density,
velocity, and pressure using a piecewise-linear func-
tion. A three-wave approximate solution to the Rie-
mann problem at cell faces is used to calculate the con-
vective part of the numerical f luxes. Time approxima-
tion makes use of the one-step second-order Crank–
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Nicolson formula and the LU-SGS method to solve
equations for the vector increments of conservative
variables on an arbitrarily unstructured mesh.

1.1. Design Equations with Allowance for Rotation
In the given problem, the f low region varies in time

due to propeller rotation. Numerical simulation there-
fore requires approaches to constructing with suffi-
cient accuracy a solution to the problem in a moving
domain. One such approach is the so-called ALE
(arbitrary Lagrangian–Eulerian) formulation (see,
e.g., [2, 3]). Within the ALE approach, the classical
equations of motion are rewritten with allowance for
the motion of the computational domain. The law of
motion of the domain can be set arbitrarily. In the case
of a rotating propeller, the problem and design equa-
tions are simplified, since the computational domain
and mesh rotate around one of the coordinate axes as
a rigid body without deformation. The motion of the
flow region is characterized by the angular velocity
vector  with the motion velocity of
an arbitrary spatial point  being

The state of the gas at a physical point in space
 at instant t will be characterized by the

density ρ, velocity  pressure p, and tem-
perature T. In dimensional vector form, the governing
equations with allowance for rotation have the form

(1.1)

Here U is the vector of conservative variables and F
is the tensor of convective f luxes along the coordinate
directions, i.e.,

(1.2)

1.2. Numerical Method of Constructing a Solution
in a Single Computational Domain

A numerical solution to the problem is constructed
in dimensionless variables that are introduced in the
usual way: the values at infinity are selected as the
scales of density, temperature, and pressure, etc. As
the physical variables , let us
introduce a computational mesh consisting of cells

 Each of the cells can be tetrahedral, pyramidal,
hexahedral, or prismatic in shape and formed by sev-
eral triangular or quadrangular faces  The total
number of cells is  Let us denote the cell volume
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as  Let  be the average value of the vector of

conservative variables in cell i at instant 
The steady-state solution to system of equations

(1.1), (1.2) is constructed by the relaxation-in-time
method [1], which is not described here. One of the
options for constructing a time-implicit scheme for
transient problems is to employ the Crank–Nicolson
approach, which is used extensively for solving para-
bolic equations. A symmetric second-order accurate
discretization is used within this approach, so for the
values of the vector of conservative variables at the
upper layer n + 1, we have the formula

(1.3)

Here,  is the matrix of rotation around a given
axis of the coordinate system. The quantity
is an approximation of the differential part of the sys-
tem and is defined as the sum of numerical f luxes 
through the faces of cell 

(1.4)

where  is the outer unit normal to a
face.

Piecewise-linear reconstruction with a slope lim-
iter is used to determine the values of the f low variables
at the faces of a cell given the cell averaged values of
these quantities. The coefficients of the reconstruc-
tion polynomial are determined by least–square
method in a local coordinate system using the solution
values in adjacent cells that enter the so-called recon-
struction stencil [4, 5]. The slope limiter is used to
suppress possible oscillations of nonphysical nature
[6]. The reconstruction procedure performed for each
face l of spatial cell i results in a pair of values of con-
servative variables   A modification of the
HLLC method [7] for a rotating coordinate system [8]
is used to determine the convective f luxes.

To determine the solution values at the upper time
layer , it is necessary to solve system of equations
(1.4). A straightforward algorithm for finding  in a
three-dimensional problem is extremely computation-
ally intensive, requiring an enormous amount of com-
puter memory. It is therefore expedient to take advan-
tage of iterative methods. One of the approaches
widely used in industrial codes is integration in so-
called pseudotime. Let us introduce a pseudotime
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(1.5)

The relevant value of the vector of conservative
variables at the upper layer  is determined as a
steady-state solution to Eq. (1.5) in the pseudo time.
For convenience, in what follows, we use the notation

Here k is the time step number in pseudo time. By
introducing a time discretization with a local step 

in the discrete form, similar to the steady-state case,
we arrive at the following equations for calculating the
increment of quantity  over time:

(1.6)

Here, quantities  are the upper bounds of the
eigenvalues of the Jacobian matrix of the numerical
flux.

The straightforward solution to linear system of
equations (1.6) for increments in the vector of conser-
vative variables is a very complicated problem. In the
current paper, the implicit LU-SGS method not
involving calculation of Jacobian matrices (the so-
called matrix-free method) is used [9]. The procedure
for solving the system of linear equations consists of
backward and forward sweeps. The backward sweep
has the form ( )
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Fig. 1. Topology of computational domain for simulating
the discussed six-bladed propeller with pylon.
For the forward sweep we use the relations
( )

(1.8)

The criterion for convergence of the inner itera-
tions is that the residual drop by no less than three to
four orders of magnitude. The time step  was calcu-
lated by the formula

(1.9)

where  is an estimate for the maximum (in absolute
value) eigenvalue in the cell, K is a prescribed Courant
number, and  is the characteristic linear dimension
of a cell. The explicit scheme corresponds to 
Large Courant numbers  can be used for the
implicit scheme to curtail the solution time.

1.3. Modeling Complexly Shaped Helical Configurations

As mentioned above, numerical simulation of a
propeller rotating near a stationary pylon is impossible
with only one rotating mesh. In this work, the transi-
tion was made to a modeling based on combining the
rotating domain (the washer) in the immediate vicinity
of an propeller or a pair of propellers and the outer
static domain. In other words, the numerical solution
is constructed simultaneously on several nonconfor-
mal computational meshes, some of which may arbi-
trarily rotate as a rigid body. Figure 1 shows the typical
topology of a multizone computational domain. One
can see the rotating washer around the propeller, with
the pylon and relevant part of the propeller bushing
belonging to the outer static domain. On each of these
two meshes, system (1.1) is solved with the domain-
specific value of the angular velocity Ω. Nonstationary
“joining” of solutions is performed at the shared
boundaries.

As a whole, the numerical algorithm for construct-
ing a time-accurate transient solution operates as fol-
lows. At the initial instant, the f low field is initialized
with values obtained from the steady-state calculation.
On passing from moment  to moment , the solu-
tion is found in each of the computational domains
with algorithm (1.6), which involves rotation of the
mesh in the washer. When this happens, information
on the connectivity of cells bordering the boundary on
each side is updated on every sliding plane between the
zones. Data exchange on the sliding domain boundar-
ies and interpolation of the values of the vector of con-
servative variables occur in the course of pseudotime
iterations. The solution to the problem is thus approx-

1,2,i N= …

( )( )−
σ

σ >

Δ = Δ −

× Δ − Δ∑
( )

1

:

1*
4

.
l

l

k
i i i

i
k

li li li i li
l i i

D V V
V

T F V V a

ntΔ

 min ,n i
ni
i

ht K
S

Δ =

n
iS

ih
1 3.K ≤

1K @

nt 1nt +
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
imated both spatially and temporally in several non-
conformal domains.

Switching to multizone computational meshes
necessitated changes to the algorithm for computing
convective f luxes near the boundary between rotating
blocks, as well as modifications to the implicit LU-
SGS algorithm near the block boundary, to improve
the algorithm’s reliability.

In this work, we use a numerical technique that
does not rely on the assumed conformality of the ver-
tices of meshes from different zones. In this approach,
for every boundary cell  from a given zone K, we find
a boundary cell  from zone M that is closest to
the face l of the former cell; the latter cell touches the
common boundary with its face with number 

The algorithm for calculating numerical f luxes uses
information on the solution from cells  and 
and their neighbors in order to calculate the values of

(1.10)

In the greater part of the f low, the numerical tech-
nique uses an algorithm for constructing the recon-
struction polynomial, based on the least squares
method. The stencil-construction algorithm adds the
required number of neighbors to cell . However, the
construction of such a stencil is complicated for cells
near the boundary with another cell zone (domain),
because one or several cell faces may not have an
immediate neighbor. A very complex procedure of
copying data from the neighboring zone needs to be
implemented for the least-squares method to be used,
especially when the solution is carried out on parallel
computers.

In this study, the least squares method is supple-
mented with a procedure for calculating the coeffi-
cients of a piecewise-linear approximation of the solu-
tion in cells using the divergence (Gauss–Ostro-
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gradsky) theorem. For a cell  for which all its
neighbors belong to the same mesh zone, the gradient
of the scalar function f is estimated as follows:

(1.11)

where  is the outer unit normal to face l and  is the
approximate value of f on this face, which is equal to
the arithmetic mean between  and the value in the
adjacent cell with index  After this, the values on
every cell face  are calculated by the simple formula

(1.12)

Formula (1.12) can easily be generalized to include
cells near the boundaries between zones. If a face l
belongs to the boundary between zones, then instead
of the nonexistent value from cell , the value from
the closest cell of a neighboring (bordering) zone with
number  is used. As a result, the calculation of
face values makes use of the values of unknowns in the
cells from both adjoining zones; the gradient formula
itself is centered around cell  rather than one-sided.

Let us describe a modification of the LU-SGS
algorithm on sliding planes. First, it should be noted
that the direct and inverse steps in the method are
cycles with explicit data dependence. This leads to dif-
ficulties at the boundaries between zones, especially in
parallel computing. The simplest way to avoid this
constraint is to ignore values in cells from the neigh-
boring zone. The advantage of this method is its sim-
plicity, i.e., the LU-SGS procedure also requires addi-
tional verification that the neighboring cell belongs to
this zone and, once this has been done, every mesh
zone can be processed independently of the others.
The drawback, though, is that the procedure for deter-
mining the increments of the solution breaks down
into several unconnected domain traversals. For solu-
tions with a complex vortex structure, this may bring
down the reliability of computing in pseudotime itera-
tions and deteriorate the convergence rate.

It this work, it is proposed to treat cells that belong
to another zone as fictitious and to use the Jacobi
approximation in them:

(1.13)

This idea is similar to the approach used earlier in
literature for multithreaded realization of the LU-SGS
method [10].

2. PARALLEL SOFTWARE PACKAGE
The above numerical techniques were imple-

mented in an aeroacoustic parallel software package.
This software package is distinct in that it can simulate
a transient f low of compressible gason advanced
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supercomputers for complex configurations with
rotating parts, such as rotor–pylon, two rotors–
pylon–wing, etc. The original software source code
was created using Fortran 2008.

2.1. General Description of the Software
Package Architecture

The current software version uses an object-ori-
ented hierarchical model of classes (structures). The
first level comprises the structures that describe the
computational mesh components (vertex, face, cell) as
well as the mesh as a whole. The encapsulated proce-
dures for these structures make it possible to read the
computational mesh in the StarCD and Gambit for-
mats; construct vertex–cell, vertex–face, and face–
cell connectivity graphs; determine face areas and cell
volumes; etc. The second level includes the class
Problem, which corresponds to construction of a solu-
tion on a single-zone mesh and includes the class
Mesh. Procedures for computing physical quantities,
numerical f luxes, and the LU-SGS method are imple-
mented within the class Problem.

Finally, a container class is implemented at the
third level and includes an arbitrary number of
instances of the class Problem. The main procedure in
the container is a parallel algorithm for interpolating
data at the boundaries of different domains. An addi-
tional class Surface makes it possible to interpolate
design data to an arbitrary number of fixed surfaces of
the Ffowcs Williams–Hawkings method (FWH sur-
faces). Several FWH surfaces were, as a rule, used in
calculations to check the sensitivity of the noise calcu-
lation result to the parameters of these surfaces.

2.2. Organization of Parallel Computing
To run supercomputer calculations, the software

package has a hybrid two-level MPI+OpenMP com-
puting model, which has been actively developed in
recent years as applied to gasdynamic and kinetic cal-
culations [11, 12]. In this model, the OpenMP tech-
nology is used within one cluster node, while
exchange between the nodes is performed with MPI.

From the viewpoint of parallel computing, the
complicated part of the software is its parallel algo-
rithm for interpolating data on sliding planes between
zones, e.g., between the rotating mesh around the pro-
peller and the static mesh around the pylon. The pres-
ence of sliding boundaries is known to be a serious
problem in ensuring good parallel scalability of soft-
ware. In this study, every MPI process stores the entire
set of coordinates of faces on both sides of the sliding
boundary. After mesh rotation at the beginning of a
time step, for a part of the sliding surface belonging to
the current MPI process, a parallel multithreaded
OpenMP algorithm of search for neighbors that are
adjoining on the other side of the sliding boundary is
used.
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 2. Testing of scalability of software package on
Politekhnik RSK Tornado cluster with use of 4 to 128
nodes (112–3584 cores): (1) ideal scaling, (2) calculation. 
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Test calculations were performed using the
Lomonosov-2 supercomputer of Moscow State Uni-
versity [13] under the project Supercomputer Potential
of Russian Industry, as well as the RSK Tornado
supercomputer of Peter the Great St. Petersburg Poly-
technic University. For example, Fig. 2 shows the
results of testing the two-level OpenMP + MPI algo-
rithm on RSK Tornado cluster on a two-zone tetrahe-
dral computational mesh (washer + surrounding
space) consisting of 3 million cells. From 4 to 128 clus-
ter nodes (112–3584 physical cores) were used. It can
be seen that, despite using a computational meshes
with a relatively small number of cells, the software
package adequately scales up as the number of used
system nodes increases.
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018

Fig. 3. Problem geometry: (a) pylon in front of propeller (p

(а)
The RSK Tornado system at the Supercomputer
Simulation Laboratory (SSL) of South Ural State
University was used to run the main calculations. Sat-
isfactory scalability was achieved with this system with
up to 100 cluster nodes, a figure that corresponds to
1200 physical Inter Xeon cores (2400 hyperthreads).

3. COMPUTATIONAL MODES, MESHES, 
ORGANIZATION OF PARALLEL 

COMPUTING, AND CALCULATION TIME

The developed software package was used in this
work to study the effect of propeller mounting (puller
or pusher assembly) on the environmental noise of
advanced aircraft. For this purpose, based on a model
six-bladed propeller [1] with a blade angle of 50° and a
radius of 15 cm, two geometrical configurations with a
pylon were created:

(1) a propeller with a pylon in front of it (pusher
scheme), Fig. 3a;

(2) a propeller with a pylon behind it (puller
scheme), Fig. 3b.

In the calculations, a f low regime with the free-
stream velocity  m/s and a propeller speed of
7740 rpm was used.

For each configuration, two-zone computational
spatial meshes were created that comprised a rotating
washer around the propeller and a fixed mesh in the
remaining part of the domain, as well as several test
FWH surfaces with the parameters listed below.

A series of calculations were performed in this
study in order to determine the optimum computa-
tional mesh parameters, such as the domain size and
refinement toward the surface of the propeller, pylon,
and washer boundary.

40zu = −
usher scheme), (b) pylon behind propeller (puller scheme).

(b)
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Fig. 4. Tetrahedral mesh in washer with 6.4 million tetra-
hedra.

Fig. 5. Tetrahedral mesh condensing toward pylon and
washer in outer domain with 13 million tetrahedra.
The longitudinal size of the washer is determined
by the proximity of the propeller and pylon mounting;
the washer diameter was 250 mm. The cell size was
2 mm on blade surfaces, 4 mm inside the washer, and
3 mm on the washer surface. These mesh parameters
were selected based on the condition of having suffi-
cient resolution for propeller-geometry elements as
well as constraints imposed by the computational clus-
ter available to the authors. The section of the compu-
tational mesh for the washer is shown by the transverse
plane in Fig. 4.

For the outer (static) part of the computational
domain, it was established that the boundary of the
outer domain should be at least 10 m away from the
propeller, otherwise reflections from the boundaries
significantly affect the acoustic field inside the
domain. The total number of cells inside the washer
was 6.4 million; in the outer domain, 13 million. The
section of the computational mesh by the symmetry
plane in the static domain is shown in Fig. 5.

In addition to the above, a steady-state solution to
the problem for an isolated propeller was constructed
to verify the noise calculations by the method
explained in [1]. The computational mesh parameters
and the domain size were taken the same as for the
transient problem.

It should also be noted that the transient f low was
typically calculated until a physical time instant equiv-
alent to ten propeller revolutions; it took 24 h of com-
puter time for 96 cluster nodes at South Ural State
University.

4. CALCULATING PROPELLER NOISE

4.1. Noise Calculation Procedure and Its Verification

In the code being developed, far-field noise was
calculated using the Ffowcs Williams–Hawkings
(FWH) method with the convective Green’s function
[14], since the presence of a free-stream flow (imita-
tion of aircraft in f light) had to be taken into account.
In this work, the FWH noise calculation software,
originally used to calculate jet noise [15], was adapted
to fit the data output format employed in the software
for calculating a transient f low past a propeller. The
following two steps are performed to obtain a far-field
sound signal from transient calculation results, with
each step being verified to avoid noise calculation
errors:

(1) interpolation of transient solution data from the
computational domain cells to the cells of a test FWH
surface;

(2) extrapolation of data from an FWH surface to
the far field.

The test problem of calculating noise from a point
dipole in a medium at rest was formulated for verifica-
tion. Given such a noise source, all hydrodynamic
quantities can be calculated analytically. A dipole ori-
ented along the z axis was considered (Fig. 6a). Dipole
parameters were selected so that the frequency corre-
sponded to typical values obtained at the blade passing
frequency when testing small-scale propellers:

 Hz (e.g., a six-bladed propeller with
5000 rpm).

A dipole-encompassing cylinder with the symme-
try axis along the z axis was taken as the FWH surface.
The FWH surface dimensions were chosen approxi-
mately the same as for calculating propeller noise (see
the following section), with the fineness of partition-
ing selected at ~0.05 m (Fig. 6b), a value on the verge
of the resolving power for the relevant wavelength
(0.67 m). This was done to estimate typical noise cal-
culation errors due to the finiteness of the dimensions
of cells on the FWH surface. With the same purpose of

(2 ) 500f = ω π =
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 6. Verification of noise calculation procedure: (a) model problem formulation, (b) FWH surface split into cells. 
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assessing calculation errors, a circular hole 0.2 m in
diameter was cut on one of the FWH butt-end sur-
faces, a value close to the propeller diameter. Since the
model dipole is oriented along the axis of the cylindri-
cal FWH surface, i.e., the maximum of its emission
falls precisely on the area of the center of the butt-end
surfaces, the presence of the circular cutout at the cen-
ter of the FWH surface may distort the signal in the far
field. This test problem thus makes it possible to verify
the procedure of extrapolating noise from the FWH
surface and assess from above the errors in such
extrapolation for the most unfavorable parameters (a
coarse mesh on the FWH surface and the presence of
cutouts in it).

To verify the procedure of interpolating from the
computational mesh cells to FWH surface cells, the
noise from the FWH surface to the far field was calcu-
lated in two ways. Analytical expressions were used as
the FWH surface data in the first case, while in the
second case, analytical expressions were used to derive
the values on the spatial computational mesh, with the
values on the FWH surface being obtained by interpo-
lation of the former values to the FWH cells.

Calculations were performed for 13 observation
points located in the xOz plane on an arc with a radius
of 2 m and a pitch of 15° for a range of polar angles θ
of 0°–180° (counted from the z axis). The calculation
results are shown in Fig. 7. The FWH calculations (for
the two cases with and without interpolation) were
compared with the analytical solution.

The results demonstrate good agreement between
calculation and the analytical solution in the domain

 The agreement is significantly poorer (a dis-0.z <
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
crepancy of 1 dB) in the domain . This is
explained by the cutout in the butt-end FWH surface
for  in the area of the dipole’s strongest emission.
Note that the agreement between calculations with
and without interpolation is really good (with a dis-
crepancy of no more than 0.4 dB), which indicates the
validity of the interpolation procedure even on such a
coarse mesh.

The examination of the model problem has thus
shown that the procedure for calculating far-field
noise based on the time-dependent field of pulsations
on an FWH surface works correctly and can be used to
calculate propeller noise.

0z >

0z >



768 TITAREV et al.

Fig. 8. Sketch of configuration for calculating noise from
isolated propeller in puller and pusher configurations. 
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4.2. Calculating Propeller Noise in the Puller
and Pusher Assemblies

One of the main goals of this article was to work
through the procedure of calculating far-field noise
produced by a propeller (in different assemblies) based
on the results of transient calculations, since pylon
assemblies can be correctly compared and birotating
propellers can be considered only in the framework of
transient calculations.

Noise was calculated using the FWH method and
verified (as applied to the specific features of the soft-
ware for calculating aerodynamic characteristics) in
the previous section. Far-field noise was calculated
using three cylindrical FWH surfaces (FWH1, FWH2,
FWH3) with the axis coinciding with the z axis (and
the propeller rotation axis), the same base diameter of
0.5 m, and different heights (generatrix lengths) of 0.8,
0.9, and 1.0 m. The surfaces were symmetrical with
respect to the coordinate origin. Noise was calculated
at 13 observation points located in the xOz plane (per-
pendicular to the pylon) on a circular arc with a radius
of 2 m and a pitch of 15° for a range of polar angles
θ = 0°−180° (counted from the direction of the free-
stream flow). A sketch of this configuration is shown
in Fig. 8.

Several FWH surfaces are required in order to
check the sensitivity of the produced sound signal to
the position and size of the surface. In noise calcula-
tions, it is necessary to find a computational domain
zone in which the sensitivity of the acoustic signal to
the FWH surface parameters is small. Ideally, when
the FWH surface is in a domain in which the wave
equation holds true, the noise calculation result
should not depend on the surface parameters at all.
However, in actual problems, noise calculation can be
affected by the specific features of the computational
mesh as well as by surface perturbations of a nona-
coustic nature. For example, placement of the surface
too far from the source in a domain of a highly spaced
mesh may lead to understated high-frequency pulsa-
tions. At the same time, vortex perturbations on the
test surface may lead to overstated noise. However,
since the convection of such perturbations occurs with
a speed that is approximately equal to the local f low
velocity, which is significantly different from the speed
of sound, the phases of the contributions from these
perturbations to the acoustic pressure at any far-field
point are, generally speaking, different for different
surfaces. Meanwhile, sound waves intersecting the
FWH surfaces propagate at the speed of sound and the
phases of the corresponding contributions to the far-
field acoustic pressure coincide so that the “true” sig-
nal is not distorted after averaging over FWH surfaces.
This effect can therefore be attenuated by averaging
over several surfaces [16].

Comparison of calculations for computational
domains of different sizes—2, 10, and, 25 m—showed
that in all cases, the noise spectra exhibit a tone com-
ponent at the blade passing frequency; however,
whereas the peak values for the 10 and 25 m domains
are very close, the peak for the small domain is over-
stated by 4 dB, which in all likelihood is directly
related to the proximity of the computational domain
boundaries to the propeller. Based on the results of this
testing, 10 m computational domains were used in all
subsequent calculations.

Let us consider how the result is affected by the
choice of the FWH surface. Figure 9 shows the results
of spectral processing of far-field signals over three
FWH surfaces for one of the observation points, at 90°
to the propeller axis (the observer is in the propeller
disk plane). The noise emission maximum at the blade
passing frequency is usually observed close to this
direction. The blade passing frequency (BPF1) can be
clearly seen, as is usually the case for propeller noise
for a favorable f low regime (on the one hand, there is
noticeable thrust, but on the other hand, the blade’s
local angles of attack are not too high, with the f low
past the blades remaining attached). Several lower-
amplitude harmonics of the blade passing frequency
can also be seen (BPF2, BPF3). The magnitude of the
BPF1 peak does not depend on the choice of the FWH
surface, as should be the case given correct calculation
and choice of test surface; in addition, the broadband
noise level is also approximately the same for all surfaces.

The energy contained in the BPF1 peak is approx-
imately 60% of the total signal energy (for θ = 90°).
The remaining energy is mainly related to rather pow-
erful broadband noise, which should be considered
nonphysical in calculations based on the Euler equa-
tions, since they do not correctly describe the non-
steady-state generation of vortex structures and the
corresponding field of turbulent pulsations. At the
same time, it is known [18] that the levels of spectral
peaks at the blade passing frequency and its harmonics
are determined by steady-state (with regard to the
blades) parameters, including mean forces and
moments acting on the propeller. Hence, since the
Euler equations for describing f low past propellers
yields acceptable accuracy in calculating such average
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 9. Comparison of far-field noise spectra (θ = 90°)
obtained using different control FWH surfaces: (1) FWH1,
(2) FWH2, (3) FWH3. The vertical lines indicate the blade
passing frequency and its harmonics. 
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parameters, this implies that the tone propeller noise
components (at the BPF1 frequency and its harmon-
ics) are described quite correctly, provided, of course,
that their level is sufficiently high compared to the
broadband noise level.

Figure 10 shows the pulsation spectra for different
observation angles. In the case at hand, it can be con-
cluded that the BPF1 peak (its magnitude) has physi-
cal meaning because it is above the broadband noise
level by more than 10 dB for angles of observation of
30°–150°. This suffices to estimate propeller noise in
the main approximation, because it is this peak that is
prevalent in experimental research. The main atten-
tion will be devoted to analyzing noise characteristics
specifically at the BPF1 frequency. All directivity pat-
terns will be constructed in what follows for angles θ =
30°–150°.

It should also be noted that so-called phase averag-
ing [17] is often used in actual propeller noise mea-
surements, a technique that makes it possible to isolate
tone components in a more explicit way against the
broadband noise background. This technique, how-
ever, was not utilized in the current research because,
as will be shown, the fundamental harmonic signifi-
cantly exceeded the background noise level for virtu-
ally all viewing angles. Moreover, applying phase aver-
aging to numerical simulation is cumbersome,
because it involves calculations for a large number of
propeller rotations, thus placing a significant demand
on computational resources.

Figure 11 compares the directivities at the funda-
mental harmonic in the puller assembly obtained using
the three test surfaces indicated above. It can be seen that
the results are rather close (to within ±1.5 dB) in the
entire range of angles of observation where the funda-
mental harmonic manifests itself explicitly. In what
follows, the results obtained from the FWH1 surface
are used.

Figure 12 compares the noise spectra in the puller
and pusher assemblies at the BPF1 frequency. The
presence of a pylon can be seen to deform the directiv-
ity pattern. Putting the pylon in front of the propeller
increases noise in the forward hemisphere and, vice
versa, the pylon behind the propeller causes more
noise to be emitted in the aft hemisphere. These
effects may be related to the interference between the
primary (propeller) and secondary (pylon) noise
sources.

4.3. Separation of the Propeller and Pylon Contributions
to the Total Noise

Merely adding up the emission spectra of the pro-
peller itself and a signal due to reflections from air-
frame elements is not sufficient to account for the
effect of mounting in noise calculations. This
approach would have been correct only if these
sources were uncorrelated. In reality, acoustic signals
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 12. Comparison of directivities of fundamental har-
monic for (1) puller and (2) pusher configurations. 
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Fig. 13. Sketch of FWH surfaces in puller configuration for
separating contributions of propeller and pylon to total noise. 
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emitted by the propeller and mounting elements at the
BPF1 frequency are phased, and their interference
needs, therefore, to be taken into account in the over-
all noise assessment.
In this study, interference between propeller- and
pylon-related sound signals was studied for the more
common puller configuration (the pylon is down-
stream of the propeller). To this end, two additional
test surfaces, formed on the basis of the FWH1 sur-
face, were used in sound emission calculations. The
FWH1a surface covered only the propeller, with the
FWH1p surface enveloping the pylon. The extents of
the surfaces in the axial direction were as follows:

–0.4 < z < 0.4 m for FWH1;
–0.075 < z < 0.4 m for FWH1a;
–0.4 < z < –0.075 m for FWH1p.
Cutouts with a radius of 0.2 m (Fig. 13) were made

in the FWH1a and FWH1p surfaces at z = –0.075 (the
propeller wake here was the most intensive). As shown
in the test problem with a dipole, such a modification
has a relatively small effect on the accuracy of sound
field calculations while eliminating the nonphysical
contribution of the propeller’s vortex wake to the
acoustic signal.

First of all, the computed far-field directivities of
the fundamental noise harmonic were compared for a
signal emitted from the FWH1 surface and for the sum
of signals emitted from the FWH1a and FWH1p sur-
faces (Fig. 14). It can be seen that the noise directivi-
ties calculated by these two methods are close; i.e., the
error associated with difference in the interpolation of
solutions at the FWH surface is negligibly small.

This creates the possibility of isolating the contri-
butions of emission by the propeller itself and emission
due to the presence of a pylon to the total noise. Figure 15
shows the directivities of emissions of these two noise
components at the fundamental harmonic. In partic-
ular, it can be seen from this figure that, given the
small angles with the propeller axis, the total noise
proves lower than one of its components due to inter-
ference between signals from the propeller and pylon.

The FWH1a surface signal, which is the contribu-
tion of the propeller noise, was verified by its compar-
ison with the calculation results for the noise from an
isolated propeller based on the steady-state distribu-
tion of parameters on the blades (Fig. 15). It can be
seen that the calculation results agree with each other
to within 2 dB near the emission maximum (45°–
135°), which indicates correct operation of the nonsta-
tionary solver.

The influence of interference on noise can be seen
in Fig. 16, which compares the directivities of the fun-
damental harmonic for the sum of the propeller and
pylon signal powers, which does not allow these sig-
nals to be phased, with the total signal from the pro-
peller and pylon, which correctly takes into account
the interference between these two sources. It follows
from the figure that the effect of interference can be
either positive or negative.

The interference effect can be illustrated with the
following simple example. Suppose we have two sig-
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018
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Fig. 15. Directivity pattern for noise components related to
propeller and pylon: (1) total noise as signal emitted from
FWH1 surface; (2) propeller noise as signal emitted from
FWH1a surface, (3) pylon noise as signal emitted from
FWH1p surface. Symbols indicate directivity pattern of
propeller noise obtained from steady-state calculation
without pylon. 
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Fig. 16. Comparison of the sum of propeller and pylon sig-
nals without (sum of powers, curve (1)) and with (sum of
signals, curve (2)) allowance for interference. 
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nals that have the same amplitude but are phase-
shifted, i.e.,

The power of each signal is

Summation of these powers yields 
At the same time, the total signal power is

Thus, summation of the powers of the two signals
may result, depending on the phase shift ϕ, in a value
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Fig. 17. Determination of phase of fundamental harmonic of sig
axis. Solid lines denote total signal; dashed lines, fundamental h
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that may be either higher or lower than the composite
signal power. The maximum positive effect of the
interference is achieved for the phase shift of ϕ = π,
when the two equal-power signals are in antiphase and
completely cancel each other. On the contrary, the
negative effect of the interference takes place when the
signals are in-phase, i.e., ϕ = 0. In this case, the com-
posite signal power is double the power it would have
been for uncorrelated signals.

It can be seen from the plot in Fig. 16 that the total
signal power exceeds the sum of the powers of the indi-
vidual signals at an angle of 105° to the propeller axis,

 while in the direction 60° from the
propeller axis, by contrast, it falls below it, i.e.,

 Based on the above analysis, it can be
expected that the propeller- and pylon-related sound
signals are in-phase in the direction 105° and, on the
contrary, in antiphase in the direction 60°. Indeed, the
time histories of the signals (Figs. 17 and 18) support
this conclusion and demonstrate correspondence
between the phase shift of the propeller and pylon sig-
nals and the effect of amplification or attenuation of
the total noise due to interference.
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Fig. 18. Determination of phase of fundamental harmonic of signals from (a) propeller and (b) pylon at angle of 60° to propeller
axis. Solid lines denote total signal; dashed lines, fundamental harmonic. 
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The effect of propeller sound emission interfering
with a signal from the propeller-mounting elements
can be either positive or negative as far as noise is con-
cerned. One can, therefore, state the problem of opti-
mizing the design of an aircraft with the aim of its
noise reduction by varying the geometrical propeller-
mounting parameters so as to reduce emission in the
direction of certified control points by making use of
interference.

CONCLUSIONS

A parallel software package has been developed for
solving time-dependent aerodynamics equations. The
software makes it possible to predict noise of propel-
lers with complex configurations having rotating parts,
such as rotor–pylon, two rotors–pylon–wing, etc. An
implicit second-order numerical method on unstruc-
tured meshes has been implemented in the package.
The method includes a time-accurate algorithm for
approximating convective fluxes on sliding planes
between different mesh domains and an MPI+OpenMP
two-level parallel model.

The software package was used to study the influ-
ence of propeller mounting (puller or pusher scheme)
on the tonal far-field noise component. Two geomet-
rical configurations were created to this end based on
a model six-bladed propeller, i.e., the puller configu-
ration, with a pylon installed in front of the propeller,
and the pusher configuration, with a pylon behind the
propeller. In the non-steady-state case, a noise calcu-
lation procedure by the integral Ffowcs Williams–
Hawkings method has been realized with the use of the
Green’s function for the convective wave equation,
making it possible to properly account for the free-
stream flow.

It has been shown that propeller noise at the emis-
sion maximum (in and near the propeller plane) is
dominated by a tonal signal at the blade passing fre-
quency, which is consistent with the known experi-
mental and theoretical data. Based on the nonstation-
ary calculation performed for a model propeller, the
influence of the pylon position (puller or pusher con-
figuration) on the characteristics of the fundamental
harmonic of propeller noise has been studied. It has
been shown than in the pusher configuration, noise
amplification is observed in the forward hemisphere,
while in the puller configuration, on the contrary,
more noise is emitted in the aft hemisphere.

Interaction between noise sources in the propel-
ler–pylon system has been analyzed for the puller con-
figuration. Propeller- and pylon-related components
have been separated in the overall noise. The thus-
obtained propeller-noise directivity pattern has been
compared with noise calculation results based on loads
on the blades of an isolated propeller, and the two were
shown to agree. It has been demonstrated that when
estimating the overall noise generated by the propel-
ler–pylon system, if it is assumed that the sources are
uncorrelated, this may lead to a substantial error, with
the interference between propeller sound emission
and a signal from the pylon (and other airframe ele-
ments) capable of producing either a positive or nega-
tive effect.

Thus, once properly taken into account, the inter-
ference effect can be used to optimize the aircraft
design with the aim of reducing environmental noise.
It should be noted that the significance of the above
interference effect for actual configurations will
depend on the relationship between the contributions
to the overall propeller noise from the harmonic and
broadband components, which in turn depend on the
blade geometry, the regime of the f low past them, etc.
Numerical simulation of the broadband propeller
noise component is a significantly more complicated
problem compared with calculation of the tone com-
ponents; it is related to the necessity of being able to
resolve rather fine vortices, a task that would require
even more significant computational resources and
massive computational meshes. In the future, the
authors plan to implement such methods as applied to
propeller noise.
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018



NUMERICAL MODELING OF THE INFLUENCE OF THE RELATIVE POSITIONS 773
ACKNOWLEDGMENTS

The authors are grateful to I.V. Belyaev for his help
with the acoustic processing of steady-state calcula-
tions. The research has been carried out using the
equipment of the shared research facilities of HPC
computing resources at Lomonosov Moscow State
University [13] and partially supported by a grant from
the RF government pursuant to Decree no. 220 “On
Measures to Attract Leading Scientists to Russian
Higher Professional Education Institutions,” agree-
ment no. 14.Z50.31.0032. The part of the study related
to calculating single propeller noise for steady blade
loads was carried out under the State Assignment of
the Ministry of Education and Science of the Russian
Federation (no. 9.1577.2017/4.6).

REFERENCES
1. I. V. Belyaev, V. F. Kopiev, and V. A. Titarev, Uch. Zap.

TsAGI 45 (2), 78 (2014).
2. A. J. Gil, J. Bonet, J. Silla, and O. Hassan, Int. J.

Numer. Methods Biomed. Eng., No. 26, 770 (2010).
3. R. Sevilla, A. J. Gil, and M. Weberstadt, Comput.

Struct., No. 181, 89 (2017).
4. M. Dumbser and M. Kaser, J. Comput. Phys. 221 (2),

693 (2007).
5. M. Dumbser, M. Kaser, V. A. Titarev, and E. F. Toro,

J. Comput. Phys. 226, 204 (2007).
6. V. Venkatakrishnan, in Proc. 31st Aerospace Science

Meeting and Exhibit (Reno, NV, January 11–14, 1993),
Paper No. AIAA 93-0880.

7. E. F. Toro, Riemann Solvers and Numerical Methods for
Fluid Dynamics, 3rd ed. (Springer, 2009).

8. H. van der Ven and J. J. W. van der Vegt, J. Comput.
Phys. 191 (41–42), 4747 (2002).

9. I. S. Men’shov and Y. Nakamura, in Proc. 6th Int. Sym-
posium on CFD (Lake Tahoe, NV, 1995), Vol. 2, p. 815.

10. A. M. Wissink, A. S. Lyrintzis, and R. C. Strawn, AIAA
J. 34 (11), 2276 (1996).

11. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets,
A. P. Duben’, and T. K. Kozubskaya, Vychisl. Metody
Program. 13 (3), 110 (2012).

12. V. A. Titarev, S. V. Utyuzhnikov, and A. V. Chikitkin,
Comput. Math. Math. Phys. 56 (11), 1919 (2016).

13. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev,
A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko,
K. S. Stefanov, and Vad. V. Voevodin, Otkrytye Sist.,
No. 7, 36 (2012).

14. A. Najafi-Yazdi, G. A. Bres, and L. Mongeau, Proc. R.
Soc. A 467, 144 (2011).

15. G. A. Faranosov, V. M. Goloviznin, S. A. Karabasov,
V. G. Kondakov, V. F. Kopiev, and M. A. Zaitsev,
Comput. Fluids 88, 165 (2013).

16. M. L. Shur, P. R. Spalart, and M. Kh. Strelets, Int. J.
Aeroacoust. 4 (3–4), 213 (2005).

17. V. F. Kop’ev, M. Yu. Zaitsev, N. N. Ostrikov,
S. L. Denisov, S. Yu. Makashov, V. A. Anikin, and
V. V. Gromov, Acoust. Phys. 62 (6), 741 (2016).

18. B. Magliozzi, in Aeroacoustics of Flight Vehicles: Theory
and Practice, Vol. 1: Noise Sources, Ed. by H. Hubbard
(NASA Langley Research Center, Hampton, VA,
1991), p. 1.

Translated by V. Potapchouck
ACOUSTICAL PHYSICS  Vol. 64  No. 6  2018


	INTRODUCTION
	1. NUMERICAL METHOD FOR MULTIZONE DOMAINS
	1.1. Design Equations with Allowance for Rotation
	1.2. Numerical Method of Constructing a Solution in a Single Computational Domain
	1.3. Modeling Complexly Shaped Helical Configurations

	2. PARALLEL SOFTWARE PACKAGE
	2.1. General Description of the Software Package Architecture
	2.2. Organization of Parallel Computing

	3. COMPUTATIONAL MODES, MESHES, ORGANIZATION OF PARALLEL COMPUTING, AND CALCULATION TIME
	4. CALCULATING PROPELLER NOISE
	4.1. Noise Calculation Procedure and Its Verification
	4.2. Calculating Propeller Noise in the Puller and Pusher Assemblies
	4.3. Separation of the Propeller and Pylon Contributions to the Total Noise

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

